根据本发明的一种实施方式,在步骤s3中,首先获得9张不同角度的图片,对第0幅图片进行镜片区域定位,然后对剩余8张图片的镜片区域进行主动区域屏蔽,分别获得每一张图片的检测区域,即通过镜片区域减去屏蔽区域的方式获得每一种图片的检测区域,然后所有检测区域进行值法融合为一张检测图片,进行全局阈值分割方法、动态阈值分割方法或均值阈值分割方法进行分割,对于不同张图片同一位置处的缺陷选取面积缺陷作为该位置的缺陷,判断产品是否合格。
缺陷检测是生产制造和质量检测中的一环。它可以通过检测材料表面的缺陷,如裂纹、折叠、分层、异物等,字符检测,来判断材料是否符合质量标准。在制造业中,缺陷检测通常使用光学、声学、电磁等方法,对铸件、锻件、焊接件、压延件、板材和带材等进行检测。
在建筑领域,缺陷检测也可以用于混凝土结构检测、钢结构探伤、桩基检测等。
检测对象:布匹缺陷
主要方法:作者使用一个多层的CNN网络对布匹缺陷数据集中的六类缺陷样本进行分类,分类结束之后,ocr字符检测批发,对于
每一类样本进行缺陷检测。具体做法是: 1.使用滑动窗口的方法在512*512的原图上进行采样,采样大小为
128*128 ; 2.对上部分每一类图像采样后的小图像块进行二 -分类(有缺陷和无缺陷)。下图为文章两次分类使
用的CNN网络,两次分类的区别在于: 1.全连接层的输入分别为6和2 ; 2输入的图像尺日
ocr字符检测批发-字符检测-苏州宣雄由苏州宣雄智能科技有限公司提供。行路致远,砥砺前行。苏州宣雄智能科技有限公司致力成为与您共赢、共生、共同前行的战略伙伴,更矢志成为检测仪具有竞争力的企业,与您一起飞跃,共同成功!